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LETTER TO THE EDITOR 

Density of states of a two-dimensional electron system in 
a transverse magnetic field with a random potential 

V Sa-yakanit, N Choosiri, M Sukdananda and J Poulter 
Forum for Theoretical Science, Faculty of Science, Chulalongkorn University, Bangkok 
10330, Thailand 

Received 22 June 1990, in final form 25 July 1990 

Abstract. We consider the problem of a two-dimensional disordered electron system in a 
perpendicular applied magnetic field. Using the method of Feynman path integration and a 
Gaussian model of disorder, the densityof statesis calculatedexactlywithin the firstcumulant 
approximation and good comparison with magneto-optical experiments is obtained. 

The problem of electrons confined in two dimensions under the influence of a transverse 
magnetic field and a random potential is now of theoretical interest. Examples of two- 
dimensional electron systems  DES) are electrons confined to metal-oxide-semi- 
conductor (MOS) space charge layers and at semiconductor heterojunctions. Earliest 
interest was in electron transport properties, the integer quantum Hall effect [ l ,  21 
(QHE) and fractional quantum Hall effects, [ l ,  31 and in distinguishing localized from 
delocalized states. In the QHE, von Klitzing et a1 [4] showed that the conductivity in the 
plane, a,,, rather than being a simple linear function of the magnetic field, had plateaus 
of constant value, oxy = (e2/h)i, where iis an integer (i = . . . ,3,2,1).  Now, it is believed 
that the plateaus in oxy occur when the Fermi energy EF passes between the Landau 
levels (LLS) and through localized states, which do not contribute to the conductivity. 
Recent determinations of the electron states at the Fermi level by measuring the oscil- 
latory dependence of the specific heat [5-81, capacitance [9, lo], magnetization [ l l ,  121 
and recombination spectra [ 131 of a two-dimensional electron system show that the 
disorder, due to impurities [ 141 or to inhomogeneities [ 151 , broadens the LLs significantly. 
They confirm that there is a large density of states (DOS) between LLS. 

The DOS of an electron confined in two dimensions in the presence of a transverse 
magnetic field and a disorder potential may be evaluated using several techniques 
developed for disordered systems. In a Born approximation [ 1,9,14,16],  a perturbative 
approach, the DOS is elliptical around each LL and zero between LLS. More exact methods 
[17-211 yield a Gaussian DOS for the lowest LL, as do path-integral methods [22,23]. 
Broderix et a1 [24] discuss all these methods and the approximations in them carefully. 

In a previous paper [23] it was shown that a substantial DOS between LLS could be 
obtained using non-perturbative methods for electrons interacting with disorder having 
a finite correlation length L. In the model considered, the disorder was represented by 
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Figure 1. Curves 1 and 2 show the emission spectra Of 2D electrons found for T = 1.6 K with 
B = 0 (spectrum 1) and B = 7 T, hw = 4 meV (spectrum 2). Curve 3 (broken curve) shows 
the numerical result result for the DOS using E L  = 6.8 meV2 with L = 97 A. The magnitude 
of the DOS at B = 0, no = 1.6 X 1011 cm12 meV-’, was found by equating the integrated 
emission intensities in spectra 1 and 2. 

thevariance W ( r  - r’)  = (V(r)V(r’))of the disorder potential V(r)  seen by the electrons. 
The variance was modelled by a Gaussian 

~ ( r  - r ’ )  = E L  exp[-(r - r ’ ) 2 / ~ 2 ]  (1) 
in which the correlation length L and coefficient E L  are parameters. By making a large- 
T (time) approximation, the DOS is a sum of Gaussians centred at each Landau level E,, 
and it was found that the observed broadening [12] can be reproduced with L = 100 A 
and E L  = 80 meV2. The origin of the disorder was not specified in the model, but the LL 
broadening is generally believed to be due to impurities [ 1, 161. 

In this paper we calculate, without the large-Tapproximation, the DOS exactly within 
the first cumulant approximation using numerical integration. We show that the first 
cumulant approximation is sufficient to obtain an appropriate DOS which compares well 
with experiments [13]. It is known that there are various methods used to determine 
the DOS. However, all experiments may be classified into two different methods, the 
thermally activated magneto-conductances [5-121 and the magneto-optic [ 131. For our 
investigations, we compare our numerical results with the magneto-optic experiments 
of Kukushkin and Timofeev (see figure 1) which now seem to be the most direct method 
to determine the 2~-electron density of states. 

An electron confined in the interfaces of a MOS inversion layer is an example of a 
particle in a disordered environment. The DOS of the electrons may be evaluated using 
several techniques developed for disordered systems. We use here a path-integral 
technique developed previously for electrons in disordered, bulk materials [25,26]. We 
consider a single electron interacting with a disorder potential 

V(r)  = 2 ~ ( r  - R i )  
I 

where U(.) is an electron-impurity potential. The impurities are randomly located at Ri 
and create fluctuations in V(r). The Hamiltonian for this single electron in the x-y plane 
and a perpendicular magnetic field B = V x A is 

H = (1/2m)k + eA/c12 + V(r). (2) 
When B = 0 and V(r) = 0, the DOS per unit area for both spins is a constant n(E)  = no = 
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m/nh2.  In magnetic field B with V(r)  = 0, the electrons are confined to LLS having energy 
E,, = h o ( n  + i), where w = eB/mc is the cyclotron frequency. The DOS is 

r 

n ( E )  = n[ 6 ( E  - E,,) 
n = O  

(3) 

where n1 = nohw = l/n12 is the density of electrons that fill a single LL. Here 1 is the 
cyclotron radius. In the presence of impurities, the potential V(r) seen by the electrons 
fluctuates from point to point due to fluctuations in the impurity concentration. Thus, 
the total electron energy ( E  = T + V(r ) )  fluctuates and not all electrons have the same 
energy. This broadens the LLS. 

We assume the impurities are equally likely to be anywhere in the electron plane. 
The variance of V(r)  is modelled by the Gaussian function (1). For example, if the 
disorder is due to impurities located at random points Ri in the plane, 

V(r)  = C. U(T - R,) 

then 

W(r - r ‘ )  = n dR U(T - R ) u ( ~ ’  - R) 1 
where n is the impurity concentration. Assuming a Gaussian potential, u(r) leads 
directly to (1). We obtain n ( E )  from the propagator for the electron averaged over the 
fluctuations in V(r )  using the path-integral method 

where S is the averaged action corresponding to Hand  

j D[r(t)l  

denotes the path integral with boundary conditions r(0) = randr(  T )  = r’. For a uniform 
system, n(E)  is related to a diagonal element of K by 

n ( E )  = (A/nh) Re d T K ( 0 , O ;  T )  e(ilh)E7 I 
After completing the routine evaluation of the averaged propagator in the first cumulant 
approximation, we get 

where 

8i sin[w(T - y)/2] sin(wy/2) 
x sin( w T/2) 

G ( T , y )  = 1 + ( 7 )  

where E L  is the magnitude of the Gaussian variance, x = fm /EL ,  and E,  = n2/2mL2. 
The DOS in ( 5 )  cannot be evaluated analytically due to the complicated part in the 
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exponential term of K(0,O; T ) .  In [23] the DOS was considered by making a large-T 
approximation where (5) has an analytic form 

cc 

n ( ~ )  = n1(2nr2)-1/2 C, exp[-(E - ~ , ) 2 / 2 r 2 ]  (8) 
n = - 0  

with 

These expressions are the same as that obtained by Gerhardts [22] for n = 0. 
of every LL is equal which seems to contradict the direct 

measurement of Kukushkin and Timofeev using radiative recombination spectra of 2~ 
electrons in a MOS inversion layer [13]. It is certainly a result of using the long-time limit 
that we obtain a value which is independent of the Landau index. To avoid such an 
approximation, numerical integration can be used to evaluate the integral in ( 5 )  exactly 
and then comparison with experiments can be done to justify our expression for n(E).  
It is known that optical spectroscopy of 2D electrons makes it possible to study the entire 
n(E) dependence and yield n(EF). In all other experiments, one determines only the 
thermodynamic DOS, i.e. the quantity dn/dEF, which is in general not equal to n(EF). 
So it is more reasonable to compare our numerical results with the magneto-optic 
experiments. 

However, the width 

To calculate the density of states from ( 5 ) ,  (6), and ( 7 ) ,  we write 

n(E) = no(2/n) d t  Re exp {2i[v/x - (n + 3)lt + f’(t)} (10) 
n=O 0 

where 

-t sin t 1 
EL IOf dy [(x/4i) sin t - cos t + cos y l  f ’ ( t )  = T 2Lx 

with 5;. = E,/E: and v = E/EL.  The integration in (11) can be performed analytically. 
We take t = nN + 0 (-n/2 s 0 s n/2), so that (10) becomes 

cc 

n(E) = no K ( ( v  - x ( n  + h ) ) ,  
n=O 

where 

K( v) = (2/n) Ios d t  Re  exp(2ivtlx + f‘(t)) 

with 

and 

a = (x/4i) sin e - cos 8 la - vu2 - 11 < 1. 

The time integral is then performed by Gaussian quadrature. Figure 1 

(15) 
shows the DOS 
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Figure 2. Emission spectrum found when the angle between the magnetic field and the 
normal to the plane of the 2D layer is 60" (hw = 2 meV). The broken curve shows the 
numerical result for the DOS with E L  = 6.8 meV2 and L = 97 A .  

and its energy dependence from the radiation spectra obtained from the MOS structure 
for n = 2.7 x 1 O I 2  cm-2 at T = 1.6 Kin a magnetic field B = 0 (figure 1, spectrum 1) and 
B = 7 T perpendicular to the 2~ layer (figure 1, spectrum 2, U = 16, N 6 4). From our 
expression in (12), by choosing an appropriate E L  = 6.8 meV2 with L = 97 8, cor- 
responding to EL = h2/2m*L2 = 2 meV (using m* = 0.2me as in the experiments), our 
numerical results for the DOS can fit the experiments very well as shown in figure 1 
(broken curve). Furthermore, when the magnetic field B makes an angle 60" with the 
normal, our results are still in good agreement as shown in figure 2 (broken curve). We 
find that the width r tends to decrease while the Landau index N increases. The DOS 
between LLS is not exponentially small and is an appreciable fraction of n(E)  at B = 0. 
Although our results for the DOS between LLS seem to be a little lower than those obtained 
in experiments by the magneto-optic method, they are acceptable because of the tend- 
ency of peak-height increasing and peak-width decreasing as the Landau index increases, 
and are in good agreement. 

In summary, we are able to reproduce the density of states observed in a typical two- 
dimensional electron gas, such as that shown in figure 1 and figure 2,  using a simple 
model of disorder having Gaussian variance C L  with finite correlation length L - 100 8,. 
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